If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2+-36t+96=0
We add all the numbers together, and all the variables
3t^2-36t=0
a = 3; b = -36; c = 0;
Δ = b2-4ac
Δ = -362-4·3·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-36}{2*3}=\frac{0}{6} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+36}{2*3}=\frac{72}{6} =12 $
| 1/2x-3/5=3/4 | | 7x/5(2-9)=5x+8 | | 8(8x-10)+9=9x+6 | | 3/5x7=8 | | 14-3x=−4x | | R=900x-0.1x | | -5x-2(3x-17)=-10 | | 2x+(2x-1)=22 | | x-(0.001x)=1500 | | 8x2=2 | | (9x+1)(5x-4)=0 | | A(n)=-3n+6 | | -2x-3(3x+5)=-4 | | 5(3x+5)=9x+10 | | 5s-12=10 | | (5x-10)+(3x^2-12)=180 | | 9(a+7)+8=2 | | −9s−8+5s=−10. | | 16=-4t-4 | | 2w+8=8 | | 12(x+3)-20=64 | | 11s=9 | | 1/4x-7=1+3x | | 9=11s | | 11(k-11)=1 | | 4x+1=7x-20 | | -x-6(-2x+1)=-6 | | 6(2x-3)-10=32 | | (3x+2.5)=(4x-35) | | 58h+112=5 | | -10y–3=7 | | -5n=65 |